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This paper contains a study, from the point of view of equations with a
small parameter associated with higher derivatives, of thin elastic shells
of a general shape, defined on surfaces of positive Gaussian curvature and
fixed on the contour.

1. The operator of the theory of thin elastic shells and
the formulation of the basic theorem. We introduce on the middle
surface S of the shell the orthogonal curvilinear coordinates x,, Xy,
where x, = const and x, = const are lines of curvature. Let us tj‘lesignate
by.G the region of change of parameters x,, x, on the plane x, + ix,,
which corresponds to the surface S.

Let us assume that the boundary of the region G is a sufficiently
smooth, closed, nonintersecting curve I.

Let the length of an elementary arch be
ds® = A, (zy, %) dz,® + A (21, %) dzs?

We will assume that the functions A,, A, are continuously differen-
tiable to a sufficiently high order in G+ L and 4, > 0, and 4, > 0 in
G+ L.

Let the Gaussian curvature of the middle surface S be positive, i.e,
kb, >0

vhere k, and k, are the principal curvatures of the same surface.

Let e, e, e be the mmit vectors along tangents to the lines xy, %,
and to the normal to the middle surface S respectively.
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We start with relations [1,2 ]

511(“)=Ai1 %’f‘ﬁ%uz—kl%
eus (W) = oy (W) = 5 {42 (2 2 0 (1) 1)

g2 (u) = %22—2' %Az%xi:ul — kaug
o= B B gl S ()

a0 = () = {0k — ) [ 55 (5)— 452 s (3] -
A 0 (1 dug\ Ay 0 (1 Oug
— G e )~ 5 () (1.2)
=t i, T, T S a1
(1= 3 we)

i=1
where u is the vector of small displacements of the points on the middle
surface S.

The potential energy of deformation of a thin shell will be of the
form[21]:

E
TA—o%) S g {h [e1a® 4 20811800 + 832" + 2 (1 — o) e?] +
G
hS
+ﬁ [31% 4 20159 43557 4 2 (41— o) “122]} 414,54z, dz,

where h is the thickness of the shell, E is Young’s modulus and o 1is
Poisson’s ratio.

The differential equations of equilibrium of the thin elastic shell
obtained from the principle of the minimum potential energy will be
written down in the form

h (Bu + ~2Nu) = A,4.q (1.3)
where q is the external loading and
3- 3
Bu = Z (Biu) e;, Nu = 2 (NViu)e;
i=1 =]

E 8 94, 1—0c 8
Byu = — {— i [Az (11 +9820) 14+ (9811 + €2) 5 — *A—: 7z, (Aﬁsm)}
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Byu = 1%62{ 3z [A; (o811 + &29)] + (611 + c3322) 6A1 -1 —26 2 (A2? 312)}
——7 [(ky + oks) &1 + (oky + &5) 65 414,
Nyju= mi—E_—cz)‘{— 4y [% (11 + o%g9) + g—:‘é (o%n + “22)] —

'—126 o [4,2 (kz— kl) "12]}

Bsu-—_—-'—“i

Noyu= 52_(1E_67)_{ A, [Z: (317 + o3%99) + (cku + x22)]
+ _A__a— 6_3:_1‘ [45*(ky— Fy) “12]}

Nyu= m{— Ay Ay [F1® (%17 + 9%g9)] + K2? (o1y 4 x90) +

a1 a4 AR
+ o [Az ot 0“22)]+ prn { A Fa (omu xzz)] —

a 1 a 1
- 71;3—2;[ 2 ("11 + ox0)l — 5 - 577 (A1 (o1 + xa0)] —

1 o 1 o
— (1 — 9) 3 7 g (Ar¥an) — (1 —9) o s - (AsPaa)}

Let the vector q be continuous and continuously differentiable to a
sufficiently high order in G + L.

Assume further that

9= qo (%1, ) + Qi (%1, o5 B) (1.4)
where g, # 0 does not depend on h and
limgg|q1 |2 doydzy = O (1.5)
R0 ¥

We introduce the vector U = hu which, by virtue of (1.3) and (1.4),
satisfies the equation

BU + #2NU = A, 4; [qo (%1, %s) + @ (21, 22, B)] (1.6)
Let us consider the following two problems.

Problem A. Let the vector U = Ue, + Uye, + Use, satisfy the equation
(1.6) and the boundary condition
U1 = Uz == U3 8U3 0

- on L (1.7

where v 1s the normal to the curve L.
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Problem B. Let the vector U, = U, e, + U,.e, + U, e; satisfy the
equation

BU, = A,4,q, (21, 2,) (1.8)
and the boundary condition
U10:U20:0 on L (1.9)
We note that the problems A and B are formulated correctly.
Basic Theorem. 1f U and U; are solutions of problems A and B, then
U=U,+U;+ U, (1.10)

where the vector Ui =U,e +U,e,+ U31e3 has the form:

Us = {ah" cos (gh™") + h [by sin (gh™") + ¢, cos (gh™ ") + dy]} e=n "

Uy = {ash™ cos (gh™") + R [bysin (gh™") ++ cy cos (gh™ ") + dply e—eh™ " (1.11)

Usy = {as [sin (gh™")cos (gh™")]+bsh™ [sin (gh™")—cos (gh™")+-1]} e=sn—"
whereby the function g, determined in a certain neighborhood Q of the

boundary L, becomes zero on L and is positive at points of the region G.
The vector U, depends on h in such a fashion that

1imSS|U2|2dx1dz2 =0 (1.12)

h-0 el

2. Basic inequality. We consider the equation
Bv 4 22Nv =Q (2.1)
Let us now prove the following lemma.

Lemma. If the vector
V = v1€; -+ U@y + V€3

satisfies the equation (2.1) and the boundary condition

B=t == B =0 on L (2.2)
then

SS|v§2dx1dx2<1SS|Q|2d:c1dx2 (2.3)

G G

where y is a positive constant number not dependent on h, Vv and Q.
Inequality (2.3) will be called the basic inequality.

Proof. We introduce the notation
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(vy, vy) -~ Sg viVe da, dz,
G

Applying the boundary conditions (2.2) and the inequality a? + b% +
20ab » (1 - 0)(a®? + b?) we easily obtain

(Bv,v)>; Ly SS 5] g2 (V) dz,dx, (2.4)

G i, j--1

where
AAs >4 >0 in G- 1
The following equation holds:

2
2 &ij (V) &1j (W) Ay Ay =
i, j'fl
3

Z i (W) + {A [v1811 (W) -+ 280 ()]} + {41[Z 1E12( W)+ vp800(W)]} (2.5)

where
Pyw = — L [Agey, (W)] 4+ 22 ey (wy — ! A2
W T Gy 2t o, S (W) — 4, Of [Ar%ez (W)
) 4 oA
Pow = — 6%2 [A1805(W)] -} (—JQ e (W) — jT E_ [Ay2e1, (W)]
Paw = — A4, [kyery (W) -+ Kugyy (W)]

Let us consider the system of differential equations
Pw=0 (i=1,2,3) (2.6)

From the equation Pyw = 0 we obtain

k] ( 1 8u] 1 UAI \ s k) 1 dw 1 6A
Wy == s | = — -
3 ki 4 ket \ Ay oy Ayly Oy / + T kgt (Az Oy A Ay Bxy ) (2. 7)

Introducing (2.7) into equations Pw=20, Pw=0, we obtain

2
, ()/1 *Jz \
S diju; - 0 (4= 3 720 iy (2.8)
4 Jduy? s’ 4
=1 hitizee
whereby
Aghy? A ky — ky)?
20 __ e 2. * L 11 - 11_,,_‘(l 2)
i Ay (k% ka?)? /n 24; Jio'h = ot == 2 (k1?4 ko?)
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/11]{,‘12

f22°2 = - WT/TF)’ /41111 - 1220;1‘/'12027/2120:/2102 == fzzll:O
It is not difficult to calculate
det, < Dde g diy iz (A ] ) ks A (A1 ] As) kra?)
. 2 /'t! 1 2 )l L z(klg T kzz)
Jitia=2 DA

Hence it follows that system (2.8) is a system of elliptic type in
region G, since k.k, > 0 in that region,

As is known (see for example [3 1), there exists a fundamental matrix

oo (3 2

21

of system (2.8), Each column of this matrix, with x G and x # y, satis-
fies the same system.

Consider the following system of vectors

Q1 = 011€] - W€, | Wy €3, P2 = 0128 + 0908, + Wge€,4
where functions ("Bj(j = 1, 2) are determined by formula (2.7).

It is easily seen that for x G and x # y the vectors ¢>j(j =1, 2)
satisfy system (2.6).

Let the point y(y,, y,) lie within G. We isolate this point by a circle

K, of radius ¢. We form the integral

2
SS 2 &ij (V) &1j (@n) A1 4odz,dT, (n=1,2)

G—K, i, j=1

From this integral, using equation (2.5), system (2.6) and boundary
condition (2.2), and passing to the limit as ¢ » 0, we obtain

@ = D iWeion) sddndr, (=12 (2.9)

G i, j=1

The kernels of the integrals possess a weak singularity, and these
integrals, as is known, bounded in L,(G), are operators on ¢ i (v). From
the boundedness of these operators it follows

. 2 2 .
\& ) valdydz, << SS S &5 (v) dnydz, (2.10)
G n=1 G i, j=1

where y, = const > 0 does not depend on v.
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Applying inequality 2ab » — (a? + b%), from (2.4) we can obtain

EAy(1 — 2 . « EAg(l —o) (7 < ,
B+ 22l S @ deda > TRE S S ) dada,
&%, =1 G, =1
2.11)
R 1 i)vl k " __ 1 oA,
= A5 1935 €y :’ZI_A;'E%
;1 om, ., 24,
€oy = E@—kﬂ)s, €22 = A4, o Uy
e A(iow  tom
B2 = 821 = 3 (Az oz T 4, 6x1>
v w4 (0A | 24
8lg =8y = 54,4, (69:2 vy +- '%1—02)
Now from (2.4), applying (2.10), we can deduce
2
(Bv,v)}ngg S (&) daydzy (2.12)
G ti,j=1
where y, = const > 0 does not depend on v,
From (2.11), by virtue of (2.12), it follows
2
By, >\ | 3 ()2 drada, (2.13)

G i j=1

where y; = const > 0 does not depend on v.

It is easily deducible that
2

SS Z (si5')? dzydzy > 74 S S [(Foe10")? + (h182e')® + 2 (812)?) dxydz, (2.14)
G

G i, j=1

where y, = const > 0 does not depend on v.

From (2.14), applying the inequality a? + b% > 1/2(a - b)? and the

equation
SS(Q’_’L% _¢’2v_1f?_vﬁ)dgclazgg2 -

0xy 07y oz, 0z,

we can deduce

RS é (ei5")? dzd2: > Y5 Q S U g—;‘;)z + (gg:—)z] dz,dz, (2.15)
¢

G i, jml

where y, = const > 0 does not depend on v.
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Now we can write down the following inequality:
2 2
SS 2 2 &) dede, > SS[(Eu — k1os)? + (e0s® — kov3)*] dyday (2.16)
i,j=11, j=1
where
o ___ 1 60}1 o 1 67,2

€ = — €
11 A, axl’ 22 Az 32'2

From (2.16), by virtue of 2ab < a’? + b2, we obtain

[ S0 () dmdy + 2 (1 — )1, SS[(?%)” + (32 ] dmida, >

G i,j=1

> —o)1, S & ve? dz,dz, (2:17)
where ¢
AL12<70’ %22<“{67 k24 k2>7>0 in G+ L
Applying (2.15), from (2.17) we can now deduce

S S é (e5")2dmydas > 74 & g vg? dx,diz, (2,15)
G

G i,j=1
where yg = const > 0 does not depend on v.
From (2.13), by virtue of (2.18), it follows that

(Bv,v) > 798 S vt dxydz, (2.19)
G

where yy = const > 0 does not depend on v.
Now from (2.4), applying (2.10), we may also deduce

Ed, Sg(vﬁ 1 v,?) dzyd, (2.20)

BV oy

Adding the inequalities (2.19) and (2.20), we obtain
(Bv,v) > m“[vpdxl dz, (2.21)

G

where Y1g = const > 0 does not depend on v.

From equation (2.1) we can deduce the following equality
Bv,v) + £%(Nv, v} = Qv (2.22)
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Applying the boundary condition (2.2), we easily obtain

E

(NVV)2> 5oy

Z xi? (V) A Aydr,d, (2.23)

i, j=1

Taking into account (2.4) and (2.23), from (2.22) we can obtain
(Qv) > (Bv,v)
Hence, applying (2.21), there follows

(Q¥) >0\ { | v1? dmide (2.24)
G

From (2.24), by virtue of Qv 1/2(jv|2 + | Q|2), we can deduce

g%‘ledxldxz Ijoggfvlzd%d% "rmgglvlzixldxz
G

2v10
G G

Hence there follows the basic inequality (2.3), and the lemma is
proved.

3. Proof of the basic theorem. We now proceed to the proof of
the basic theorem formnulated in Section 1.

Vector Uz =U- U = U & + Uy,e, + Ujyeg, by virtue of (1.6) and
(1.8), satisfies the equauon

BU,’ + h2NU,’ = A4;4,q, (2, T, k) — h2NU, (3.1

and by virtue of (1.7), (1.9), the boundary condition

Up' =U, =0, Us = —Us, an=——EL—fﬂ on L 3.2

av av

We introduce the vector Ul* = U, *e, + U, *e, + U; e, which satisfies
the equation
BU," L 12NU,* = 0 (3.3)

and the boundary condition (3.2).
The vector U * will be sought in the form
U'=U,+R (3.4)
where the vector U, is determined by formulas (1.11).

Introducing (3.4) into equation (3.3), we obtain
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BR+iNR=2 {0 2 pe it — ) Dpla+
+ (1 + 5) papata -+ 24a (ky + 5ky) paas exp (— gh™") sin (gh™*) +
+1_E_{[ Zpt+d — ) h P }cl + (1 + o) papece + 1 (a1, @, aa,g)}x
x exp(—gh~Msin(gh™") —E {2 2 + (1 — 9 G pet] o+
+ (L + o) pupabs + /™) (a1, @z, a5, by, g)} exp (— gh ™) 005 (gh ") + y sz X
x {28 b 4 (1 — o) 52 pat] dy + (L + ) papads + 24 (ks + o) pibef

[
soxp (— g™ 4 31 (7% [F cos (&) + @D sin (g~ + %,V X
=)

x exp (— gh™ ") (3.5)

B;R + *N,R = E {(1 + 3) p1pety + [ ‘—: p+(1— 3)%1’1?‘] ap -

+ 24, (oky + Ko) pzas} exp (— g™ sin (g™ 4 1Zor {(t + 9) pupues +
+ [ %: pl+(1—o) “ﬁf Pf] o+ /% (a1, a5, a5, g)} exp (— gh~ ") sin (gh™") —

P {(1 + ) Plpzbr*{z & p?+(1 —0) %gplz] by+ 72" (a1, @y, @3, bs, 8)} X

X exp (— gh™) cos (gh™") + g—‘c—z) {(1 + 9) p1pedy +
+[ 21 pgt (1 — o) 22 2] dy -+ 24, (ks + ks) pabsf exp (— k™) +

+ 2 (K F® cos (gh™") + @@ sin (gh™") + 3Py exp (— gh ™) (3.6)
i==]

BsR -+ R2N3R = ““E*”“{ Ay (ky -+ oks) pray — A, (sky + k) paas +

+ [ e (2 + B2 + 26k, 2>+3AA( P+ 522t asf
X [sin (gh™""*) 4 cos (gh™ " exp (—gh™") +
A 4
+ ) (RHF® cos (ghT) + @, sin (ghT7) + 3, @]} exp (— gk (3.7)

i=1

where
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) g _ Og
Pr= 611 ’ F2= s

We consider the system of equations
[28p2+ (1 —0) 2 p?]a+ (1 24, (ky -+ ok =0
4, +( —G)A‘zpz]al - (1 0) p1paas + 245 (kg -+ k) pras =
A A
(1 + o) pipsas+ (2 G P + (L —0) 2 pi?] as + 241 (ks + k) pags =0 (3.8)

— Ay (ky + oky) pray; — A, (ky + k) p2a2 -+
1 A
+ [— Ay Ay (h® 4 kp? - 20k k) + 3A1A2(Ajp1 + A, Pz ) ]as =0

Equating to zero the determinant of this system, we obtain
/ A
%? e+ Zi Pzz)4 — 3 (1 — %) (Akyp® + Akyps®)* = 0 3.9)

We determine the function g such that it satisfies equation (3.9),
that it venishes on L and that it is positive at points of the region G.
To prove the possibility of constructing such a function we apply the
method presented in paper [4].

The differential equations of characteristics (3.9) have the follow-
ing form (see for example [51, Section 56):

A A
8L p + L pe) 2P — 1201 — o) (Arthepy? + Akips?) A%y (3.10)

\3 A
% =8 (A i+ 71_: Pzz) Z: P2 — 12 (1 — ) (Ax*kop ® + A %kypo?) A2k py
(3.11)

dp 3 r A a fA
b il S e ) S ]
2
+6 (1 _ 62) (A22k2p12 + Alzklpzz) [sz 7 (A22k2) + p223;1-(A12,€1)] (312)

s (o ) () o ]+

(3.13)
+ 6 (1 — %) (4:2kzps® + ArPk1po?) [Pl 5 (A2*k)) + po? oz, (Alzkl)]

4
% 8 (2 p + 4 pa) —12(1 — o) (Aaps® + ATup) (3.14)

Let the boundary L be given by equations x, = x,(s), x, = x,(s),
where s is the arc length of the curve L.
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Applying (3.10) and (3.11) we obtain
d d 4, A Vrar A,
2 ()22 — 2y () S =8 (5 p + G ) [Gl e e — G (V| —
—12(1 — o®) (A?kypy® -+ APk o) [ ARz (S) pa — Aok’ (5) pal (3.15)

Since g = 0 on L, it follows
iz (8) + pote’ (s) = 0
By virtue of the last of equations (3.9) we may obtain

— o2 [Ao%kzs’® (5) + Ar’hazy 2 (s ’
S =] ) (Ay) Ay e P (5T o (Ar [ A e T 22 ()

(3.16)
o2 [A2?koxs'? (5) + Avhzy? (3)]7'1 ’
VS (=39 (Ag | Ay) "2 (5) + (A1) Az) 33" (8) @' ()

Introducing (3.16) into (3.15), we obtain

diy dx
n () g — 8O g =

_ a2V 38(1 — G [ Ak, 2 (s) + Ahay 2 ()]
—=12(1 —o )1 = e 6 1 (Al A ey 2<s>13*0

Thus, at each point of the boundary L the projection on the plane

x, + ix2 of the characteristic does not touch L.

As is known (see for example [5 ], Section 56), it follows from this
that there exists a function g in a cemain neighborhood of the boundary
L which satisfies the equation (3.9) and vanishes on L.

Receding from the boundary L (where g = 0) into G along the character-
istics, from (3.14), by virtue of (3.9), we may deduce

d A o A 4
Faop+ ) @10

By virtue of equations (3.16) we will have
Azpﬁ -} 1P22>0 on L

Hence we may conclude that owing to continuity there exists a certain
small vicinity Q of the boundary L, in which

At G pa >0 (3.18)

From (3.17), applying the inequality (3.18), we may deduce that in the
region () dg/dt = 0. It follows from this that g > 0 at points of the
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region G belonging to the vicinity of Q of the boundary L.

We note that in the case of the spherical segment 0 ¢ 6 00, the
function g has the form:

1 4
g=r12V3(1—3% (8 —9
where r is the radius of the sphere. In this case the width of the bound-
ary layer 8, measured in radians, may be calculated by the formula
b= 4 (By
Vifd—e?)
The following equations hold good on L because of the properties of

the function g and the boundary condition (3.2):

afh 4 h(c, +dy) + Ry =0

ah'r + h(cs +dy) + Ry =0 (3.19)

a i} 0R; U
as - Ry = — Uy, %-Fbsgg-—i—#:—ﬁ

As functions a3, b; we may take arbitrary functions which are con-
tinuously differentiagle a sufficient number of times, which satisfy the
boundary condition

ag = —Ugg, bg=— (6U30 + %) % on L (3-20)

av oy

and which vanish outside . It is not difficult to show that dg/dv > 0
on L.

The functions a,, a, are determined from the following system:

l %3 p2+(1—o0) ﬁ—:Pzz] a; + (1 + o) prpaa, = — 24, (k, + °k2)Plas(3 1y

A A
(A + o) prpaty +[2 2 pa? + (1 — ) 2 P02 = — 24, (5ky -+ ko) pagg

The determinant of this system has the form:
A A 2
201—(fpi -+ )

It 1is seen that, by virtue of (3.18), the determinant is different
from zero and therefore the system (3.21) is solvable in (). Outside Q the
functions a,, a, are equated to zero.

In this fashion the functions a, a,, a, satisfy the system (3.8),
since the determinant of this homogeneous system is equal to zero.

The functions bl’ bz, Cir Cos dl' d2 are determined from the following
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systems:

« A A
[2 prlz +(1—o0) 2‘2}722] ¢ - (1 4 o) pipece =— 1,V (ay, ay, a3, g) (3.22)
A A
(1 + o) p1pacy + [2 A—;pzz +(1— 3)2%[’12] ¢y = —[1®(ay, a,, a3, g)

A A
[2 ‘A—:P12 + ({1 —09) A—:P22] by - (1 4 ) pipebs = — [, (ay, ay, as, bs, g)
(3.23)

Ay

A
(1 + o) p1pady + [2 Z:P22 + (1 —o0) 7{1P12] 2 = — [ (ay, ay, 43, b3, g)

A A
[2 TP+ (1—0) A—;pzz] dy + (1 + 0) pupady = — 24, (ky + cky) prbs
(3.24)

A A
(1 + ) Pupady + [2 3 pa? + (1 — ) 2 p?|dy = — 24, (o + hy) pabs

We note that the right-hand sides of these systems vanish, together
with a,, a,, ag, b3, and r,h(.arefore the functions € Cp bl’ bz' dl' d2
may be equated to zero outside (.

The vector R, by virtue of (3.8), (3.22), (3,23), (3.24), (3.5), (3.6),
(3.7), satisfies the equation

6
BR -+ h*NR = >\ {k[F; cos (gh—") + @ sin (gh™") + y:]} exp (— gh™")
= (3.25)

and by virtue of (3.19), (3.20), the boundary condition

alhl/’ + h(cl + dl) —l" R1 = 0, aghl/z + h(Ca + dg) + R2 =0

(3.26)
R,=2R_0 onL

37 v

Let us consider the vector R’ = hi/zr1 + hr, + R-= R ‘e, + R)%e, +R;%e,
where

I = a,€; + ases, ry = (c; +di) ey + (6 + dy) e,
This vector, by virtue of (3.25), satisfies the equation
6
BR’ -+ hNR' = 31 (W [F; cos (gh~") -+ ®; sin (gh~"4) +
i=1

1 X1} exp (— gh—") -+ K% Br; + kBr, + k% Nr, + AN, (3.27)

and, by virtue of (3.26), the boundary condition
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R/=R/=R/ =28 _0 oL (3.28)

ic inequality (2.3) may be applied to the vector R, since, by
virtue of (3.28), it satisfies the conditions of the lemma, and therefore,
taking into account the right-hand side of equation (3.27), we obtain

1im“|R'|2dx1dx,=0

h—0 ¢,
~

It follows that

limSS]RI’dxl dz, = 0 (3.29)

o g
We now consider the vector
Uy = Uy — Uy = Utey + Uler + U
which, by virtue of (3.1), (3.3), satisfies the equation
BU, + 12 NU," = 4,4, (%1, %5, B) — B2 NU, (3.30)
and, by virtue of (3.2), the boundary condition (3.28),

Now applying to the vector U,* the basic inequality (2.3), since it
satisfies the conditions of the lemma, and taking into account the right-
hand side of equation (3.30) and condition (1.5), we obtain

l’fﬁ’ig' U, [2dz, dz, = 0 (3.31)
It is not difficult to derive
U=U,+ U+ U,
Hence, applying formula (3.4), we obtain the inequality (1.10), where

U, =R+ U, (3.32)

Now, taking into account (3.29), (3.31) and (3.32), we obtain condi-
tion (1.12). The basic theorem is thus proved.

It is not difficult to prove that if the condition

&S‘ql [Fdzdxz, = 0 (h)

is satisfied, then
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WU2 P dz, dz, = 0 (h).
G

It follows from the basic theorem that

limggl U—Uy— U, Pdz, dz, = 0

h
—DOG
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